1 Fig. 8 shows the curve $y = 3 \ln x + x - x^2$.

The curve crosses the x-axis at P and Q, and has a turning point at R. The x-coordinate of Q is approximately 2.05.

Fig. 8

(i) Verify that the coordinates of P are
$$(1, 0)$$
.

[1]

(ii) Find the coordinates of R, giving the y-coordinate correct to 3 significant figures.

Find
$$\frac{d^2y}{dx^2}$$
, and use this to verify that R is a maximum point. [9]

(iii) Find
$$\int \ln x \, dx$$
.

Hence calculate the area of the region enclosed by the curve and the *x*-axis between P and Q, giving your answer to 2 significant figures. [7]

2 Fig. 9 shows the curve y = f(x), where $f(x) = \frac{e^{2x}}{1 + e^{2x}}$. The curve crosses the y-axis at P.

Fig. 9

(i) Find the coordinates of P.

[1]

(ii) Find $\frac{dy}{dx}$, simplifying your answer.

Hence calculate the gradient of the curve at P.

[4]

(iii) Show that the area of the region enclosed by y = f(x), the x-axis, the y-axis and the line x = 1 is $\frac{1}{2} \ln \left(\frac{1 + e^2}{2} \right)$. [5]

The function g(x) is defined by g(x) = $\frac{1}{2} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right)$.

(iv) Prove algebraically that g(x) is an odd function.

Interpret this result graphically.

[3]

- (v) (A) Show that $g(x) + \frac{1}{2} = f(x)$.
 - (B) Describe the transformation which maps the curve y = g(x) onto the curve y = f(x).
 - (C) What can you conclude about the symmetry of the curve y = f(x)? [6]

- 3 A curve is defined by the equation $y = 2x \ln(1 + x)$.
 - (i) Find $\frac{dy}{dx}$ and hence verify that the origin is a stationary point of the curve. [4]
 - (ii) Find $\frac{d^2y}{dx^2}$, and use this to verify that the origin is a minimum point. [5]
 - (iii) Using the substitution u = 1 + x, show that $\int \frac{x^2}{1+x} dx = \int \left(u 2 + \frac{1}{u}\right) du.$
 - Hence evaluate $\int_0^1 \frac{x^2}{1+x} dx$, giving your answer in an exact form. [6]
 - (iv) Using integration by parts and your answer to part (iii), evaluate $\int_0^1 2x \ln(1+x) dx$. [4]