1 Fig. 8 shows the curve $y=3 \ln x+x-x^{2}$.
The curve crosses the x-axis at P and Q , and has a turning point at R . The x-coordinate of Q is approximately 2.05 .

Fig. 8
(i) Verify that the coordinates of P are $(1,0)$.
(ii) Find the coordinates of R, giving the y-coordinate correct to 3 significant figures.

Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to verify that R is a maximum point.
(iii) Find $\int \ln x \mathrm{~d} x$.

Hence calculate the area of the region enclosed by the curve and the x-axis between P and Q , giving your answer to 2 significant figures.

2 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}}$. The curve crosses the y-axis at P .

Fig. 9
(i) Find the coordinates of P .
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying your answer.

Hence calculate the gradient of the curve at P.
(iii) Show that the area of the region enclosed by $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=1$ is $\frac{1}{2} \ln \left(\frac{1+\mathrm{e}^{2}}{2}\right)$.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\frac{1}{2}\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)$.
(iv) Prove algebraically that $\mathrm{g}(x)$ is an odd function.

Interpret this result graphically.
(v) (A) Show that $\mathrm{g}(x)+\frac{1}{2}=\mathrm{f}(x)$.
(B) Describe the transformation which maps the curve $y=\mathrm{g}(x)$ onto the curve $y=\mathrm{f}(x)$.
(C) What can you conclude about the symmetry of the curve $y=\mathrm{f}(x)$?

3 A curve is defined by the equation $y=2 x \ln (1+x)$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and hence verify that the origin is a stationary point of the curve.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to verify that the origin is a minimum point.
(iii) Using the substitution $u=1+x$, show that $\int \frac{x^{2}}{1+x} \mathrm{~d} x=\int\left(u-2+\frac{1}{u}\right) \mathrm{d} u$. Hence evaluate $\int_{0}^{1} \frac{x^{2}}{1+x} \mathrm{~d} x$, giving your answer in an exact form.
(iv) Using integration by parts and your answer to part (iii), evaluate $\int_{0}^{1} 2 x \ln (1+x) \mathrm{d} x$.

